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Intrinsically anomalous self-similarity of randomly folded matter
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We found that randomly folded thin sheets exhibit unconventional scale invariance, which we termed as an
intrinsically anomalous self-similarity, because the self-similarity of the folded configurations and of the set of
folded sheets are characterized by different fractal dimensions. Besides, we found that self-avoidance does not
affect the scaling properties of folded patterns, because the self-intersections of sheets with finite bending
rigidity are restricted by the finite size of crumpling creases, rather than by the condition of self-avoidance.
Accordingly, the local fractal dimension of folding structures is found to be universal (D;=2.64+0.05) and
close to expected for a randomly folded phantom sheet with finite bending rigidity. At the same time, self-
avoidance is found to play an important role in the scaling properties of the set of randomly folded sheets of
different sizes, characterized by the material-dependent global fractal dimension D<D,. So intrinsically
anomalous self-similarity is expected to be an essential feature of randomly folded thin matter.
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Randomly folded matter is ubiquitous in nature [1-3].
Over the years, considerable amounts of experimental and
theoretical research have been performed to understand the
folding geometry and its effect on the mechanical behavior
of randomly folded matter [4—11]. It was found that almost
any thin material crumples in such a way that the folding
energy is concentrated in the network of narrow ridges that
meet in the pointlike vertices [5—-11]. The ridge length distri-
bution is found to conform to the log-normal or 7y distribu-
tion [2,5-8,10] with the mean A proportional to the diameter
of the randomly folded state R [9,10]. The balance of bend-
ing and stretching energy stored in the folded creases deter-
mines the scaling properties of the folded state as a function
of the sheet size L, thickness & <L, two-dimensional Young’s
modulus Y, and confinement force F [7,11]. Specifically, nu-
merical simulations of randomly folded elastic sheets per-
formed in [7] suggest that
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where D is the mass fractal dimension and ¢ is the force
scaling exponent. Hence, the set of randomly folded sheets
of different sizes is expected to obey a fractal law M« L?
o RP if all sheets are folded under the same confinement
force—i.e., F’=const [7—12]. Furthermore, numerical simula-
tions with a coarse-grained model of triangulated self-
avoiding surfaces with bending and stretching elasticity [7]
suggest different scaling exponents for the phantom
(D=8/3 and 6=3/8) and self-avoiding (D=2.3 and 6=1/4)
sheets with the finite bending rigidity [13]. An experimental
study performed with thin aluminum sheets suggests that the
scaling properties of the set of randomly folded predomi-
nantly plastic sheets of different size and thickness are deter-
mined by the effect of sheet self-avoidance [11], whereas the
mass fractal dimension of randomly folded elastoplastic
sheets is found to be material dependent, due to the strain
relaxation after the folding force is withdrawn [10].

We note that in all experimental works (e.g.,
[10,11,14,15]) the fractal dimension of folded sheets was de-
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termined using the scaling relation (1), and so D character-
izes the self-similarity of the set of randomly folded sheets of
different sizes. At the same time, the internal structure of the
folded state is also expected to possess scale invariance (self-
similarity) characterized by the same mass fractal dimension
D [12,14-16], as is commonly observed for statistically self-
similar fractals [17]. However, this property was never veri-
fied for the randomly folded matter. Accordingly, in this
work we study the scaling properties of the internal structure
of randomly folded elastoplastic sheets

Specifically, we used the square sheets of three different
kinds of paper (carbon, biblia, and albanene), early used in
Ref. [10]. The sheet size was varied from Ly=2 to 100 cm
with the relation L=\L, for the scaling factor A=1, 2, 4, &,
16, 32, and 50. At least 30 sheets of each size of each paper
were crumpled by hand into approximately spherical balls
[see Figs. 1(a) and 1(d)]. To reduce the uncertainties caused
by variations in the squeezing force and strain relaxation
after the folding force is withdrawn, all measurements in this
work were performed 10 days after the balls were folded,
when no changes in the ball dimensions were observed (see
for details Ref. [10]).

The global fractal dimension D was determined using the
scaling relation (1) for sets of randomly folded sheets of
different sizes of each paper [see Fig. 2(a)]. The ensemble
averaged diameter of balls folded from sheets of size L is
defined as R(L)=(R;(L)), where the brackets denote average
over N=30 balls of diameter R;(L,h)=(1/n)2/R; and R; are
diameters measured along n=15 directions taken at random.
We noted that the values of D measured in this work coin-
cide with those reported in [10]. We also studied the number
of intersections of a sheet with the silk string crossing
over the ball along its diameter [see Figs. 1(a)-1(c)] as a
function of the sheet size and the confinement ratio
K=L/RxRP-22 We found that the ensemble-averaged
number of intersections is equal to N=a(L/R)*=aKk” [see
Fig. 2(b)], where a is the material-dependent constant, and so
No RP-2 where D—-2 coincides with the fractal dimension of
the disconnected set of points belonging to the intersection of
the D-dimensional fractal ball with the one-dimensional
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FIG. 1. Folded balls crossed over by silk string along their (a)
diameter and chord (d) and (b),(c) and (d),(e) their unfolded states,
respectively. The crossing point numbering corresponds to the
string path.

string (see [18]). Besides, we found that the statistical distri-
bution of distances between the entry and exit points in the
unfolded sheet of size L is best fitted by the inverse Gaussian
distribution [19] with the mean A =< KR [see Fig. 2(c)] [20],
whereas the length of the string path in the unfolded sheet is
found to conform to a log-normal distribution [19] with the
mean I"« RK? [see Fig. 2(d)]. So the mean distance between
intersections of the string with the sheet in the unfolded state
is €=(¢;)='/NxKR, whereas in the folded state this dis-
tance is proportional to R/NoK~R. We also found that the
statistical distribution of distances ¢; between intersections in
the unfolded state is best fitted with the log-normal distribu-
tion [19].

To study the scaling properties of the internal structure of
randomly folded sheets, the balls were crossed over with the
silk strings in such a way that the Euclidean distance (chord
length) between the entry and exit points in the folded state r
was varied from R to 0.1R [see Figs. 1(d)-1(f)]. We found
that the number of intersections between the folded sheet and
straight line (one-dimensional string) scales as

_ o\
N—aK(R> , (2)

where the local fractal dimension D; is found to be the same
for all folded paper sheets [see Fig. 3(a)]; namely, we found
that
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FIG. 2. Log-log plots of (a) R (mm) versus L (mm): the slopes
of straight lines are equal to 0.94 (dashed line), 0.86 (solid line),
and 0.79 (dash-dotted line); (b) n=N/a versus K>=(L/R)? in arbi-
trary units; (c) A/R versus K in arbitrary units; and (d) I'/R versus
K3, in arbitrary units, for balls folded from three different papers:
carbon (O), biblia (@), and albanene (< ). Straight lines are the
best fittings.

=2.68+0.05> D. (3)

Scaling behavior (2) implies that the local mass density of
the folded sheet behaves as

R 3-D; R D-3
peal ] ) e

where p, is the material-dependent constant, 1 is the local
volume, and D<D;=3. So in contrast to the case of (statis-
tically) self-similar fractals, for which D,=D [17], the local
mass density within a randomly folded ball depends not only
on the size of local volume, but also on the ball diameter.
Accordingly, in analogy with the concept of intrinsically
anomalous kinetic roughening, which is applied to interfaces
characterized by different roughness exponents in the local
(¢) and the global (a>{) scales (see [21]), the observed
behavior (4) of randomly folded sheets can be termed as the
intrinsically anomalous self-similarity.

Besides, we found that the mean distance between the
entry and exit points in the unfolded sheet satisfies the scal-

ing relation
A r\¥
o=, 5
(3] ®

with #=0.3+0.06 for all kinds of paper used in this work
[see Fig. 3(b)]. We noted that this exponent is in agreement
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FIG. 3. Log-log plots of (a) N*=N/N(r=R) versus r/R, where
the slope of straight line is 0.68; (b) A*=A(r)/A(R) versus r/R,
where the slope of straight line is 0.3; (c) I'/r versus K3; and (d)
€*=4€/4€(R) versus A*=A/A(R) in arbitrary units, for balls folded
from three different types of paper: carbon (O), biblia (@), and
albanene ().

with the finding A = %33 in experiments [16], where the dis-
tance A was measured as a function of the Euclidean dis-
tance r between two points on the surface of balls folded
from paper sheets of size L=660 mm (R=43 mm). However,
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in contrast to [16], where it was argued that ¢y=D-2 [22],
we state that

Y=3-D, (6)

such that the total length of the string path along the inter-
section in the unfolded state scales as

I« K3r, (7)

as is shown in Fig. 3(c), whereas the mean distance between
intersections in the unfolded state, £=(¢,), is found to con-
form to a lognormal distribution [16] with the mean propor-
tional to A [see Fig. 3(d)]. Indeed, I"c N€ < LK>*(r/R)Pr=>*¥
and so from the scaling relation (7) follows the equality (6).

On the other hand, we noted that the local fractal dimen-
sion of randomly folded patterns, D;=2.68+0.05 (D;=3—s
=-2.7+0.06), coincides with the universal fractal dimension
D=8/3 expected for randomly folded phantom sheets with
finite bending rigidity [23]. This finding implies that the self-
avoidance does affect the scaling properties of the internal
structure of randomly folded thin matter [24], but plays an
important role in the global scaling behavior R L*P. The
reason for this is that in sheets with the finite bending rigidity
the sheet intersections are restricted by the finite size of
crumpling creases, Ao L(F/Yh)~°, rather than by the condi-
tion of self-avoidance, whereas the global scaling behavior
(1) is controlled by the restrictions imposed by the condition
of self-avoidance at the global scale é=R> A [25]. Hence,
one can expect that intrinsically anomalous self-similarity is
an essential feature of the randomly folded matter. Moreover,
one may expect this type of anomalous self-similarity may
be observed for diverse biological structures, such as cell
membranes, tumors, plants (see [26]), etc., where the char-
acteristic size of internal structure may be system size depen-
dent.
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